
Working with Geodata in Stata

Chao Liu∗

November 12, 2022

Stata is able to perform some basic analysis using georeferenced data. This note

will walk you through four tasks: drawing maps, geocoding, matching locations to

polygons, and finding neighboring polygons.1

I Drawing Maps

To create a map in Stata, we need two necessary packages: shp2dta and spmap.

You can download them by typing the following in your Stata command line:

s s c i n s t a l l shp2dta

s s c i n s t a l l spmap

Below, I will draw a map of the share of limited English proficient people at the

county level in the U.S.

Step 1: Use shp2dta to translate files

// use shp2dta to convert

shp2dta us ing ”$data\us county \ cb 2019 us county 500k . shp ” , ///

database (” $data\us county \usdb . dta ”) ///

coo rd ina t e s (” $data\us county \uscoord . dta ”) ///

genid (id) r ep l a c e

shp2dta reads a shape (.shp) and dBase (.dbf) file from disk and converts them into

Stata datasets. Here I use a shapefile of U.S. counties from https://www.census.gov/

cgi-bin/geo/shapefiles/index.php. The shape and dBase files must have the

∗Liu: Kellogg School of Management, Northwestern University. Email:

chao.liu1@kellogg.northwestern.edu.
1Do files and data can be downloaded from https://github.com/chaoliu-kellogg/

geodata stata.

1

https://www.census.gov/cgi-bin/geo/shapefiles/index.php
https://www.census.gov/cgi-bin/geo/shapefiles/index.php
mailto:chao.liu1@kellogg.northwestern.edu
https://github.com/chaoliu-kellogg/geodata_stata
https://github.com/chaoliu-kellogg/geodata_stata

same name and be saved in the same directory. database() specifies that we want

the database file to be named usdb.dta. coordinates() specifies that we want the

coordinate file to be named uscoord.dta. genid() specifies that we want the ID

variable created in usdb.dta to be named id.

Step 2: Merge geodata with the variable you want to plot (e.g. LEP share). In

this step, you need the database file that you got in step 1.

//merge with the va r i a b l e you want to p l o t

use ”$data\us county \usdb . dta ” , c l e a r

d e s t r i n g STATEFP, r ep l a c e f o r c e

drop i f STATEFP > 56

drop i f STATEFP == 2

drop i f STATEFP == 15

de s t r i n g GEOID, gen (f i p s) f o r c e

merge 1 :1 f i p s us ing ”$data\ county badeng . dta ” , keep (3) nogen

Step 3: Use spmap to draw maps. In this step, you need the coordinate file that

you got in step 1.

// use spmap to draw maps

format (badeng) %5.2 f

spmap badeng us ing ”$data\us county \uscoord . dta ” , ///

id (id) c ln (5) f c o l o r (Blues) ndf (gs13) ///

legend (pos (4) s i z e (medium)) t i t l e (” Share o f LEP Populat ion ”)

graph export ”$output\ l e p sha r e . png ” , as (png) r ep l a c e

The above code will generate Figure 1. You can check the help file of spmap to see

how you modify the map.

II Geocoding

If you search for geocoding in Stata on Google, you’ll find several solutions for

both forward and reverse geocoding. However, by the time of this writing, most of

them are no longer in service.

I find opencagegeo a stable tool to do geocoding tasks. It requires an OpenCage

Data API key which can be obtained by signing up at https://geocoder.opencagedata.com/

users/sign up. The user can choose among a number of customer plans with dif-

ferent daily rate limits. To use this package in Stata, you will install three required

2

https://geocoder.opencagedata.com/users/sign_up
https://geocoder.opencagedata.com/users/sign_up

Figure 1. LEP Share in the U.S.

libraries:

∗ I n s t a l l r equ i r ed l i b r a r i e s :

s s c i n s t a l l opencagegeo

s s c i n s t a l l l i b j s o n

s s c i n s t a l l i n s h e e t j s on

Then it is straightforward to use opencagegeo to do forward and reverse geocoding.

// forward geocoding : from address to coord ina te

/∗ I f you have a datase t o f addre s s e s s to r ed

in a s i n g l e s t r i n g va r i ab l e ' address ' ∗/
opencagegeo , key (YOUR−API−KEY) f u l l a d d r e s s (address)

/∗ I f your addre s s e s are s to r ed in s epara te va r i ab l e s ,

e . g . house number in 'num ' , s t r e e t name in ' s t r ' ,
c i t y in ' c i ty ' , and country in ' ctry ' : ∗/
opencagegeo , key (YOUR−API−KEY) number (num) s t r e e t (s t r) ///

c i t y (c i t y) country (c t ry)

// r e v e r s e geocoding : from coord ina te to address

/∗ To geocode coo rd ina t e s s to r ed in a s i n g l e

v a r i ab l e ' coords ' in the f o l l ow i ng format :

l a t i t ude , l ong i tude ∗/
opencagegeo , key (YOUR−API−KEY) coo rd ina t e s (coords)

3

/∗ I f your coo rd ina t e s are s to r ed in two

separa t e v a r i a b l e s ' l a t ' and ' lng ' ∗/
opencagegeo , key (YOUR−API−KEY) l a t i t u d e (l a t) l ong i tude (lng)

III Matching Locations to Polygons

Suppose you have a list of coordinates for bank branches, how do you know which

county each branch is located in. You can solve this problem by using opencagegeo

to get the detailed address, but a quicker and easier way is to use geoinpoly.

After you install this package by “ssc install geoinpoly”, you can use the fol-

lowing code to determine the county of each bank branch.

// use shp2dta to convert

shp2dta us ing ”$data\us county \ cb 2019 us county 500k . shp ” , ///

database (” $data\us county \usdb . dta ”) ///

coo rd ina t e s (” $data\us county \uscoord . dta ”) ///

genid (id) r ep l a c e

// use geo inpo ly

use ”$data\branch 2019 . dta ” , c l e a r

drop i f s im s l a t i t u d e == . | s ims l ong i tude == .

geo inpo ly s im s l a t i t u d e s ims l ong i tude ///

us ing ”$data\us county \uscoord . dta”

merge m:1 ID us ing ”$data\us county \usdb . dta ” , keep (1 3) nogen

You can get the locations of bank branches in 2019 from https://www7.fdic.gov/

sod/dynaDownload.asp?barItem=6. Again, we first use shp2dta to convert shape-

files to Stata data files. We then ask geoinpoly to use the latitude and longitude in-

formation in the bank branch file and the coordinate file that we created by shp2dta.

The output contains a variable named ID, which indicates the identity of counties.

You can further merge the output with the database file (i.e., usbd.dta), and then

you have FIPS codes for each bank branch.

The data we downloaded from FDIC actually include the county of each bank

branch, so we can compare our results to the records provided by FDIC. The accuracy

rate of using geoinpoly is over 99%.

4

https://www7.fdic.gov/sod/dynaDownload.asp?barItem=6
https://www7.fdic.gov/sod/dynaDownload.asp?barItem=6

// check

de s t r i n g GEOID, gen (f i p s) f o r c e

gen c o r r e c t = stcntybr == f i p s

tab c o r r e c t

c o r r e c t | Freq . Percent Cum.

−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 | 702 0 .81 0 .81

1 | 85 ,688 99 .19 100 .00

−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total | 86 ,390 100 .00

IV Finding Neighboring Polygons

In this example, I show how you can find neighboring Public Use Microdata

Areas (PUMAs) for each PUMA in the 2000 census.2 The 2000 version of Pub-

lic Use Microdata Areas (PUMAs) is the lowest level of geography identified in

the 2000 census 5% sample and the ACS/PRCS samples from 2005 to 2011. You

can download the corresponding boundary files from https://usa.ipums.org/usa/

volii/2000pumas.shtml.

Again, we first need to use shp2dta to read shapefiles and translate them to Stata

data files.

shp2dta us ing ”$data\ ipums puma 2000 . shp ” , ///

genid (ID) data (” $data\puma2000 . dta ”) ///

coor (” $data\puma2000 coor . dta ”) r ep l a c e

The main idea is to find points that exist in multiple polygons. We can find these

points in puma2000 coor.dta using the following code:

use ”$data\puma2000 coor . dta ” , c l e a r

/∗ remove dup l i c a t e s with in each polygon

and miss ing coo rd ina t e s that i nd i c a t e

the s t a r t o f a new polygon ∗/
drop i f mi (Y , X)

2I thank Robert Picard for sharing this method. Original source: https://

www.statalist.org/forums/forum/general-stata-discussion/general/1377956-creating-
neighbor-information-variables-in-country-panel-data.

5

https://usa.ipums.org/usa/volii/2000pumas.shtml
https://usa.ipums.org/usa/volii/2000pumas.shtml
https://www.statalist.org/forums/forum/general-stata-discussion/general/1377956-creating-neighbor-information-variables-in-country-panel-data
https://www.statalist.org/forums/forum/general-stata-discussion/general/1377956-creating-neighbor-information-variables-in-country-panel-data
https://www.statalist.org/forums/forum/general-stata-discussion/general/1377956-creating-neighbor-information-variables-in-country-panel-data

gdup l i c a t e s drop Y X ID , f o r c e

/∗ reduce to coo rd ina t e s that

appear in more than one polygon ∗/
bys Y X : keep i f N > 1

Once you have a list of points that are located in boundaries, you only need to

form all possible pairs of adjacent PUMAs.

/∗ switch to wide form and reduce to

one obs per conterminous country s e t ∗/
by Y X : gen j = n

greshape wide ID , i (Y X) j (j)

keep ID∗
gdup l i c a t e s drop ID ∗ , f o r c e

/∗ switch back to long form and form

a l l pa i rw i s e combinat ions with in the s e t ∗/
gen s e t = n

greshape long ID , i (s e t)

drop i f mi (ID)

drop j

save ”$data\puma sets . dta ” , r ep l a c e

rename ID ID pa i r

jo inby s e t us ing ”$data\puma sets . dta”

drop i f ID == ID pa i r

/∗ remove dup l i c a t e s and merge

with database to get the name ∗/
bysort ID ID pa i r : keep i f n == 1

merge m:1 ID us ing ”$data\puma2000 . dta ” , ///

a s s e r t (match us ing) keep (match) nogen

rename (ID ID pa i r STATEFIP PUMA GISMATCH) ///

(ID pa i r ID STATEFIP1 PUMA1 GISMATCH1)

merge m:1 ID us ing ”$data\puma2000 . dta ” , ///

a s s e r t (match us ing) keep (match) nogen

rename (STATEFIP PUMA GISMATCH) ///

6

(STATEFIP2 PUMA2 GISMATCH2)

We can create two data sets. The first one contains all pairs of neighboring

PUMAs, and the second contains neighboring PUMAs in different states.

/∗ f i n a l l i s t ∗/
i s i d GISMATCH1 GISMATCH2, s o r t

save ”$output\neighboring puma2000 . dta ” , r ep l a c e

keep i f STATEFIP1 != STATEFIP2

save ”$output\bordering puma2000 . dta ” , r ep l a c e

7

	Drawing Maps
	Geocoding
	Matching Locations to Polygons
	Finding Neighboring Polygons

